热搜: 棉纱  纺织  染费  降税  阿克苏  环保  化纤  缅甸  美棉  卢比  盛泽  服装  服装定制  不染色  丝路柯桥  皮棉  生态  中俄  染料  人民币 

2019年最具潜力的20大新型智能纺织材料

   日期:2019-01-14     来源:德科纳米    浏览:152    评论:0    

人类始终走在发明和创新的道路上,新材料的发明极大地影响了产品及其制造过程的未来。永远不会变干的材料、可编程水泥、让皱纹消失的材料、仿生塑料……究竟谁会是2019年最具潜力的新材料?小编带您一睹为快!

1·永远不会变干的材料NEVERDRY

图片来源:西班牙《阿贝赛报》

突破性:由聚合物和水制成的材料,可导电且不会变干。

应用领域:可以用于制作人造皮肤以及具有仿生功能的柔性机器人。

主要研究机构(公司):麻省理工学院

2·可编程水泥

图片来源:莱斯大学

突破性:将水泥颗粒(混凝土中的一种成分)“编程”成使其更坚固的形状。这也产生了具有较少多孔性和更耐水和耐化学性的混凝土颗粒,这不仅防止了化学和水吸收造成的损害,而且对环境的危害较小。

应用领域:建筑、工业。

主要研究机构(公司):莱斯大学

3·让皱纹消失的材料

图片来源:西班牙《阿贝赛报》

突破性:将这种细腻而柔滑的聚合物涂在皮肤上,能够瞬间拉紧皮肤、消除下垂,在不知不觉间让皱纹消失。

应用领域:在护肤品开发和皮肤病治疗方面具有良好应用前景。

主要研究机构(公司):麻省理工学院

4·无限可回收的塑料

图片来源:Bill Cotton /科罗拉多州立大学

突破性:可以无限期地回收利用,同时保持塑料的性能。

应用领域:现有塑料的替代品。

主要研究机构(公司):科罗拉多州立大学

5·人造蜘蛛丝

图片来源:英国剑桥大学研究院

突破性:细菌被喂食糖、盐和其他微量营养素以产生丝蛋白质,然后将这种蛋白质变成细粉末,制成纤维、复合材料等。

应用领域:纺织材料、医疗和飞机船舶制造等领域。

主要研究机构(公司):日本Spiber公司、巴西基因资源与生物技术研究所、美国Bolt Threads公司、英国剑桥大学研究院、瑞典农业大学

6·仿生塑料

图片来源:哈佛大学Wyss研究所

突破性:该材料是从丢弃的虾壳中提取的壳质和来源于蚕丝的丝素蛋白组成,复制了昆虫表皮的强度、耐久性和多功能性。

应用领域:可用于制造迅速降解的垃圾袋、包装材料和尿布。作为一种特别坚固的生物相容性材料,它也可用于缝合承受高负荷的伤口,例如疝修补或作为组织再生的支架。

主要研究机构(公司):哈佛大学仿生工程Wyss研究所

7·木材海绵

图片来源:ACS Nano

突破性:经化学品处理,剥离半纤维素和木质素而成的木材海绵,可以从水中吸附油脂,吸油量可达到其自身重量的16-46倍,可重复使用多达10次。这种新型海绵在容量、质量和可重复使用性方面超越了现有的所有其他海绵或吸附剂。

应用领域:石油和化学品泄漏对世界各地的水体造成了前所未有的破坏,木材海绵作为绿色材料能够有效解决这个问题。

主要研究机构(公司):中国林业科学研究院

8·高强生物材料

图片来源:ACS Nano

突破性:该材料由源自木材和植物体的纤维素纳米纤维制成,最终结构的拉伸模量为86GPa,拉伸强度为1.57 GPa,比蜘蛛丝强度高8倍,而且可生物降解。

应用领域:用作塑料和其他不可降解物体的绝佳替代品。

主要研究机构(公司):斯德哥尔摩KTH皇家理工学院

9·自修复(愈合)材料

图片来源:麻省理工学院

突破性:自修复材料是一种可以感受外界环境的变化,集感知、驱动和信息处理于一体,通过模拟生物体损伤自修复的机理,在材料受损时能够进行自我修复的智能材料。

应用领域:军用装备、电子产品、汽车、飞机、建筑材料等领域。

主要研究机构(公司):麻省理工学院、美国伊利诺伊大学、米其林、日本国家材料科学研究所(NIMS)、横滨国立大学、东京大学

10·铂金合金

图片来源:兰迪蒙托亚

突破性:该合金由10%的金和90%的铂制成,所得材料的耐磨性比高强钢高100倍。与大自然中的钻石、蓝宝石等材料处于同一级别,是迄今为止最强的合金。

应用领域:可用于制造新型发电系统、发动机和其他设备。

主要研究机构(公司):桑迪亚国家实验室

11·微晶格

图片来源:来自HRL实验室的镍和磷微晶格

突破性:微晶格材料是目前世界上质量最轻的金属结构组合,在外形上它呈三维开放蜂窝聚合物结构。这种材料的密度是0.9mg/cm3,比泡沫轻100倍。

应用领域:航空新材料,波音公司计划采用该成果制造更轻、更省油的飞机。

主要研究机构(公司):HRL实验室

12·分子强力胶

图片来源:GIZMODO

突破性:从化浓性链球菌侵入细胞后释放出的蛋白获得灵感,这种蛋白分为二部分,但当它们再相遇时会像胶一样结合在一起;由这两部分蛋白组成的胶,称为分子强力胶(molecular superglue)。这种胶的粘结强度高;耐高低温性好,同时能够承受酸和其它恶劣环境,并能很快密封。

应用领域:可用作癌症的诊断手段;分子强力胶可粘结金属、塑料及其它物质,解决了现有各种涂料都与金属粘附不强的问题。

主要研究机构(公司):牛津大学

13·超薄铂

图片来源:GOKCEN/国家标准和技术研究所

突破性:一种快速、廉价地沉积铂超薄层的新方法,可减少燃料电池催化剂的贵金属用量,从而大大降低其成本。

应用领域:氢燃料电池。

主要研究机构(公司):美国国家标准和技术研究所

14·Karta-Pack(棉纤维)

突破性:100%的回收材料,来自废弃的牛仔裤和T恤,兼具棉的质感和塑料的刚性。

应用领域:高端包装、家具设计等。

主要研究机构(公司):PulpWorks

15·石墨烯气凝胶

图片来源:Advanced Materials

突破性:坚固有弹性且质轻,可以吸收高达自身重量900倍的油脂。石墨烯气凝胶密度0.16 mg/cm3,比氦气轻,仅为氢气密度的两倍。

应用领域:清理海洋石油泄漏,或作为一种非常有效的保温材料。

主要研究机构(公司):浙江大学、哈尔滨工业大学、中科院等

16·可阻挡阳光的玻璃涂层请输入标题

图片来源:RMIT大学

突破性:该涂料可以自行调节玻璃的透明度,当环境温度高于67ºC以上时,透明涂层将变成具有金属光泽的反射层。

应用领域:建筑、交通运输等。

主要研究机构(公司):澳大利亚皇家墨尔本理工大学

17·柔性电池

图片来源:Fast Company

突破性:该柔性电池由纤维纺制而成,弯曲性能好,可以在不影响其性能的情况下弯曲几千次。

应用领域:是未来智能服装、电子纺织品、可穿戴设备以及可变形移动设备的完美选择。

主要研究机构(公司):Jenax Inc、苹果、松下、美国加州大学圣地亚哥分校、哥伦比亚大学等

18·生物质来源的可生物降解的纺织品

图片来源:Laura Luchtman和Ilfa Siebenhaar

突破性:利用藻类、细菌、真菌、酵母等活体生物制造可生物降解的纺织品,创造环境友好材料,将服装行业从浪费和污染中解脱出来。

应用领域:服装、纺织。

主要研究机构(公司):纽约市时尚技术学院,iknit公司

19·坚如岩石的涂层

图片来源:由橡树岭国家实验室提供

突破性:为工业钻头和刀具专门设计的铁基非晶合金涂层,涂层成本远远低于碳化钨钴硬质合金等常规材料,其较长的使用寿命提高了工具的效率。

应用领域:工业、制造、建筑等。

主要研究机构(公司):橡树岭国家实验室、Lawrence Livermore国家实验室、Colorado矿业大学等

20·真菌泡沫

图片来源:由VIA FLICKR的MYCOBOND提供

突破性:由植物秸秆、水稻和小麦壳等农作物废料与蘑菇的根部粘结在一起制成的菌丝体。

应用领域:用作汽车保险杠、门、顶盖、发动机舱、汽车行李箱衬层、仪表盘以及座位的石油基塑料泡沫替换物。其他潜在用途包括桌面、冲浪板和服装。

主要研究机构(公司):Ecovative设计公司

 
标签: 智能 纺织 材料
 
更多>同类纺织资讯
0相关评论

推荐图文
推荐纺织资讯
点击排行
网站首页  |  我们的服务  |  关于我们  |  联系方式  |  版权隐私  |  付款方式  |  404页面  |  网站地图  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备10084311号